

This program is paid for by Otsuka America Pharmaceutical, Inc. and Lundbeck, LLC. The speaker is a paid contractor of Otsuka America Pharmaceutical, Inc.

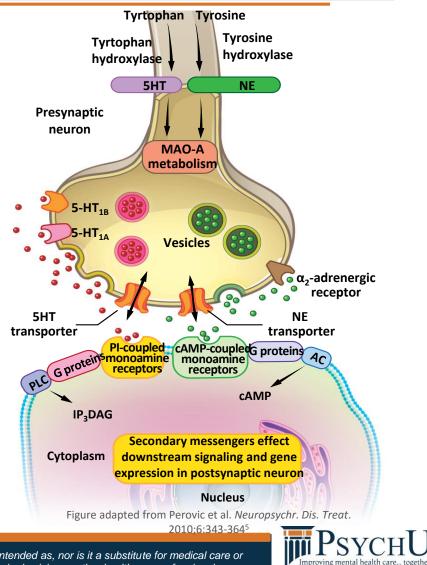


# The Evolving Psychopharmacology of Major Depressive Disorder

Otsuka America Pharmaceutical, Inc.

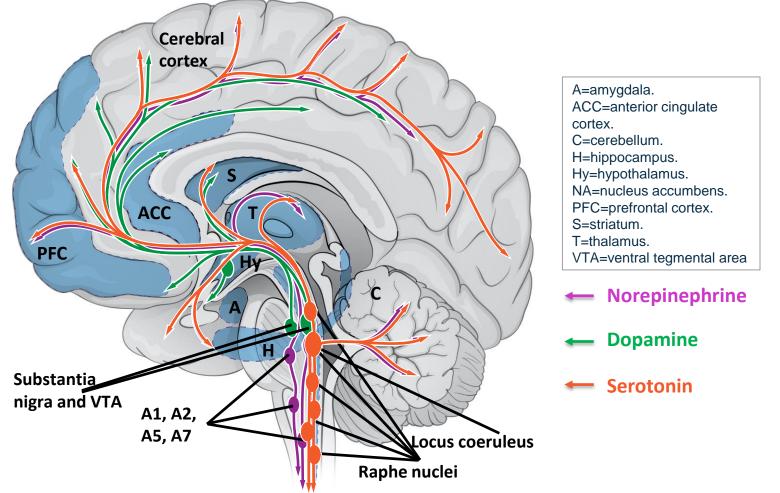
©2015 Otsuka America Pharmaceuticals, Inc.

Lundbeck


MRC.CORP.D.00091

# **Monoamine Imbalance Theory of MDD**

- One theory of depression is that it may arise from a deficit or underactivity in the brain of monoamine signaling (dopamine [DA], serotonin [5HT], and norepinephrine [NE])<sup>1</sup>
- Deficiency in monoaminergic neurotransmission may be in the monoamine levels themselves, or through disrupted receptor signaling<sup>2,3</sup>
- Evidence that supports the monoamine imbalance hypothesis is that antidepressants can, selectively or in concert, raise monoamine neurotransmission tone (5HT, NE, and/or DA) and reduce depressive symptoms<sup>2,4</sup>


MAO-A=monoamine oxidase A; PLC=phospholipase-C; PI=phosphoinositide; cAMP=cyclic adenosine monophosphate; AC=adenylate cyclase

- 1. Delgado PL. Primary Psychiatry. 2004;11:28-30
- 2. 2. Svenningsson P, et al. Science. 2006;311(5757):77-80
- 3. Savitz JB, Drevets WC. *Neurobiol Dis.* 2013;52:49-65.
- 4. Tran P, et al. J of Psychiatric Research. 2012;46:64-71.
- 5. Perovic B, et al. Neuropsychiatr Dis Treat. 2010;6:343-364.



© PsychU. All rights reserved.

# Monoamine Pathways Overlap in Several Areas of the Brain<sup>1-8</sup>



- 1. Fuchs E, Flugge G. *Dialogues Clin Neurosci.* 2004;6(2):171-183.
- Stahl SM. Chapter 7. In: Stahl SM, ed. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Application. 4th ed; 2013:284-369
- 3. Jacobs BL, Azmitia EC. *Physiol Rev.* 1992;72(1):165-229.
- 4. Abercrombie ED, et al. J Neurochem. 1989;52(5):1655-1658.
- 5. Stanford SC. *Pharmacol Ther.* 1995;68(2):297-242.
- 6. Meana JJ, et al. *Biol Psychiatry*. 1992;31:471-490.
- 7. Garcia-Sevilla JA, et al. *J Neurochem*. 1999;72(1):282-291.
- 8. Roiser JP, Sahakian BJ. *CNS Spectr.* 2013;18(3):139-149.



# **Alternative Hypotheses**

#### Current research is focusing on potential factors related to MDD aside from monoamine activity

| Hypothesis                         | Details/Evidence                                                                                                                                                                                                                                                    |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-monoamine<br>neurotransmitters | Possible role of glutamate, GABA, or acetylcholine dysregulation <sup>1-3</sup>                                                                                                                                                                                     |
| Genetics                           | <ul> <li>Family studies suggest genetic risk for MDD<sup>4</sup></li> <li>Many candidate genes related to factors associated with MDD<sup>5</sup></li> </ul>                                                                                                        |
| Hormone activity                   | <ul> <li>HPA axis dysregulation and early life adversity linked to MDD<sup>4</sup></li> <li>Possible role for thyroid and growth hormones, estrogen/progesterone<sup>6</sup></li> </ul>                                                                             |
| Psychoneuroimmunology              | <ul> <li>Neuroinflammation, microglial activation, cytokine production, and other immune<br/>processes observed in disease<sup>7,8</sup></li> </ul>                                                                                                                 |
| Neurotrophic factors               | <ul> <li>MDD and stress may result in neuronal degeneration<sup>9</sup></li> <li>Antidepressant treatment may stimulate neuronal growth via BDNF<sup>10</sup></li> <li>Monoaminergic neurotransmitters stimulate astrocytic NT-3 production<sup>11</sup></li> </ul> |
| Circuit dysfunction                | <ul> <li>Neuroimaging suggests changes in blood flow and glucose metabolism in brain areas<br/>involved in emotional processing<sup>12</sup></li> </ul>                                                                                                             |

BDNF, brain-derived neurotrophic factor; MDD, major depressive disorder.

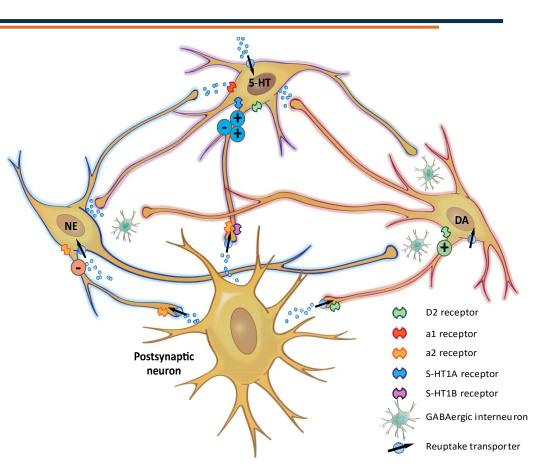
- 1. Zhao et al. *J Affect Disord*. 2012;138(3):494-502
- 2. Witkin JM et al. J Pharmacol Exp Ther. 2014;351(2):448-56
- 3. Mineur YS and Picciotto MR. Trends Pharmacol Sci. 2010;31(12):580-6;
- 4. Hasler G. World Psychiatry. 2010;9(3):155-61
- 5. Laje G et al. Psychiatr Serv. 2009;60(11):1446-57
- 6. Bondy B. *Dialogues Clin Neurosci*. 2002;4(1):7-20

- 7. Haroon E et al. Neuropsychopharmacology. 2012;37(1):137-62
- 8. Moylan S et al. Neurosci Biobehav Rev. 2014;45:46-62
- 9. Lee AL et al. *Bipolar Disord*. 2002;4(20):117-28
- 10. Pittenger C et al. Neuropsychopharmacology. 2008;33(1):88-109
- 11. Mele T et al. Int J Dev Neurosci. 2010;28(1):13-9
- 12. Palazidou E. Br Med Bull. 2012;101:127-45.



### **Proposed Mechanisms for Antidepressant Activity<sup>1-7</sup>**

#### Antidepressants


- Reuptake inhibitors
  - SSRIs, SNRIs, NDRIs
  - TCAs
- MAOIs

#### **Mood Stabilizers**

 Evidence suggests some may enhance serotonergic neurotransmission

#### Antipsychotics

- All alter D<sub>2</sub> neurotransmission
- Some atypical antipsychotics also target 5HT receptors, NE receptors, and a variety of other receptor types



- 1. Stahl SM. Chapter 5. In: Stahl SM, ed. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Application. 4th ed; 2013:129-236.
- 2. Stahl SM. Chapter 7. In: Stahl SM, ed. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Application. 4th ed; 2013:284-369.
- 3. Blier P, El Mansari M. Philos Trans R Soc Lond B Biol Sci. 2013;368(1615):20120536.
- 4. Rang HP, Dale MM. In. Rang and Dale's Pharmacology. 7th ed; 2012:564-583.
- 5. Nugent AC, et al. J Psychopharmacol. 2013;27(10):894-902.
- 6. Andrews PW, et al. Front Psychol. 2011;2(159).
- 7. Artigas F. Pharmacol Ther. 2013;137(1):119-131.

Figure adapted from:Blier P, El Mansari M. *Philos Trans R Soc Lond B Biol Sci.* 2013;368(1615):20120536.



### Theoretical Receptor-mediated Physiological Effects of Pharmacological Agents: Monoamine Neurotransmitters <sup>1-7</sup>

| Neurotransmitter | Receptor<br>Target(s)                                                                                   | Intrinsic Activity               | Clinical/Safety Implications                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dopamine         | D <sub>1-3</sub>                                                                                        | Antagonist or partial<br>agonist | Antipsychotic; antidepressant; anti-manic                                                                                                                    |
| Serotonin        | 5HT <sub>2A</sub>                                                                                       | Agonist or inverse agonist       | Reduce motor side effects; improve mood and cognition; sleep regulation                                                                                      |
|                  | 5HT <sub>1A</sub> , 5HT <sub>1B/D</sub> ,<br>5HT <sub>2C</sub> , 5HT <sub>6</sub> ,<br>5HT <sub>7</sub> | Antagonist or partial<br>agonist | Possibly contribute to efficacy and tolerability                                                                                                             |
|                  | 5HT <sub>1A</sub>                                                                                       | Partial agonist                  | Anxiolytic; booster of antidepressant action                                                                                                                 |
| Norepinephrine   | α <sub>2Α, 2Β, 2C</sub>                                                                                 | Agonist or Antagonist            | Antidepressant; anxiolytic; effects on emotional memories <sup>7</sup>                                                                                       |
|                  | α <sub>1A, 1B, 1C</sub>                                                                                 | Agonist                          | Improve cognition and reduce behavioral disturbance in ADHD, depression and OCD; cardiac effects. reduce orthostatic hypotension and sedation <sup>1,6</sup> |

1. Stahl SM. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th Edition. New York, NY: Cambridge University Press; 2013;

- 2. Cottingham C et al. J Biol Chem. 2011;286(41):36063-75;
- 3. Gibbs AA et al. J Neurosci. 2013;33(43):17023-8;
- 4. Neumeister A et al. Neuropsychopharmacology. 2006;31(8):1750-6;
- 5. O'Connell TD et al. J Clin Invest. 2003;111(11):1783-91;
- 6. Doze VA et al. Mol Pharmacol. 2011;80(4):747-58;
- 7. Schramm NL et al. J Neurosci. 2001;21(13):4875-82.



### Theoretical Receptor-mediated Physiological Effects of Pharmacological Agents: Non-monoamine Neurotransmitters<sup>1-3</sup>

| Neurotransmitter | Receptor<br>Target(s)                          | Intrinsic Activity    | Clinical/Safety Implications                                                                  |
|------------------|------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|
|                  |                                                |                       |                                                                                               |
| GABA             | GABA <sub>B</sub>                              | Agonist               | Sleep modification; pain reduction; anxiolytic <sup>2</sup> ; anti-<br>epileptic <sup>3</sup> |
|                  |                                                |                       |                                                                                               |
| Histamine        | H <sub>1</sub>                                 | Antagonist            | Alleviate anxiety and insomnia; may cause sedation and weight gain                            |
|                  |                                                |                       |                                                                                               |
| Acetylcholine    | M <sub>1,</sub> M <sub>3</sub> /M <sub>5</sub> | Antagonist            | May contribute to metabolic dysregulation                                                     |
|                  |                                                |                       |                                                                                               |
| Glutamate        | NMDAR,<br>mGluR                                | Agonist or antagonist | Antidepressant, antipsychotic, anxiolytic, pain control                                       |

1. Stahl SM. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th Edition. New York, NY: Cambridge University Press; 2013.; Javitt DC et al. Sci Transl Med. 2011 Sep 28;3(102):102mr2;

- 2. Chen X et al. Adv Pharmacologic Sci. 2012;ID134523;
- 3. Cavanna AE et al. Discov Med. 2010;9(45);138-44.



### **Effective Pharmacologic Treatments for Depression**

| Class                                                               | Proposed Mechanism of Action                                                                                                                                                                                                          |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| US Food and Drug Administration-Approved Therapies for Depression   |                                                                                                                                                                                                                                       |  |  |  |
| Selective serotonin reuptake inhibitors (SSRIs) <sup>1</sup>        | Increase synaptic serotonin levels and possibly postsynaptic serotonin receptor activation                                                                                                                                            |  |  |  |
| Serotonin-norepinephrine reuptake inhibitors (SNRIs) <sup>1</sup>   | Increase synaptic levels and possibly receptor activation of both serotonin and norepinephrine                                                                                                                                        |  |  |  |
| Selective norepinephrine reuptake inhibitors (NRIs) <sup>2</sup>    | Increases synaptic norepinephrine and postsynaptic adrenergic receptor activation                                                                                                                                                     |  |  |  |
| Tricyclic antidepressants (TCAs) <sup>3</sup>                       | Inhibit serotonin and norepinephrine reuptake                                                                                                                                                                                         |  |  |  |
| Monoamine oxidase inhibitors (MAOIs) <sup>4</sup>                   | Inhibits an enzyme that degrades synaptic monoamines                                                                                                                                                                                  |  |  |  |
| Atypical/multimodal antidepressants & antipsychotics <sup>5-7</sup> | Variable MOAs to increase synaptic monoamine levels. Includes norepinephrine-<br>dopamine reuptake inhibitors (NDRIs) serotonin antagonist/reuptake inhibitors<br>(SARIs), and serotonin partial agonist/reuptake inhibitors (SPARIs) |  |  |  |
| Other Potential Therapies for Depression                            |                                                                                                                                                                                                                                       |  |  |  |

| Amphetamines <sup>8</sup>        | Increase extracellular dopamine levels through multiple mechanisms |
|----------------------------------|--------------------------------------------------------------------|
| Mood stabilizers <sup>9,10</sup> | Unknown                                                            |
| Other <sup>11-13</sup>           | Variable                                                           |

Gartlehner G et al. 2007. Available at: <u>http://www.ncbi.nlm.nih.gov/books/NBK83442/;</u>
 Szabo ST et al. *Neuropsychopharmacology*. 2001;25(6):845-57;
 Gillman PK. *Br J Pharmacol*. 2007;151(6):737-48;
 Remick RA et al. *Can Fam Physician*. 1990;36:1151-5;
 Stahl SM. Stahl's Essential Psychopharmacology. 4th Edition. 2013;
 Graves SM et al. *Brain Res*. 2012;1472:45-53;
 Katonia CL et al. *Neuropsychiatr Dis Treat*. 2014;10:349-54;
 Calipari ES et al. *J Neurosci*. 2013;33(21):8923-5;
 Hantouche EG et al. *J Affect Disord*. 2005;84(2-3):243-9;
 Schloesser RJ et al. *Trends Neurosci*. 2011;35(1):36-46;
 Nemeroff CB. *Focus*. 2008; 6(1):3-14;
 Wellbutrin PI 2014;
 Oleptro PI 2010.



# Nonpharmacological Treatments for Depression<sup>1-3</sup>

- Electroconvulsive therapy<sup>1</sup>
- Bright light therapy<sup>1</sup>
- Psychotherapy<sup>1</sup>
- Meditation<sup>2</sup>
- Exercise<sup>1</sup>
- Transcranial magnetic stimulation<sup>1</sup>
- Vagus nerve stimulation<sup>1</sup>
- Nutraceuticals<sup>3</sup>
- Acupuncture<sup>1</sup>

3. Nahas R and Sheikh O. *Clin Rev.* 2011;57:659-663.



The information provided by PsychU is intended for your educational benefit only. It is not intended as, nor is it a substitute for medical care or advice or professional diagnosis. Users seeking medical advice should consult with their physician or other healthcare professional.

10

<sup>1.</sup> Gelenberg AJ et al. Practice guideline for the treatment of patients with major depressive disorder. 3rd ed. Available at <a href="http://psychiatryonline.org/pb/assets/raw/sitewide/practice\_guidelines/guidelines/guidelines/mdd.pdf">http://psychiatryonline.org/pb/assets/raw/sitewide/practice\_guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/g

<sup>2.</sup> Sarris J et al. BMC Psychiatry. 2014;14:107



# For more information or to request a more detailed live presentation on this topic from your local Medical Science Liaison, please visit www.psychu.org/liaisons

### www.psychu.org