

Pharmacokinetics: The Basics

This program is paid for by Otsuka Pharmaceutical Development & Commercialization, Inc. and Lundbeck, LLC.

Speakers are paid consultants and/or employees of Otsuka Pharmaceutical Development & Commercialization, Inc.

Objectives

- Explain the concept and clinical relevance of pharmacokinetics
- Describe drug bioavailability and the factors that affect systemic drug concentrations
- Elucidate the processes involved in the absorption, distribution, metabolism, and elimination of drugs
- Discuss the clinical application of the elimination rate constant and elimination half-life

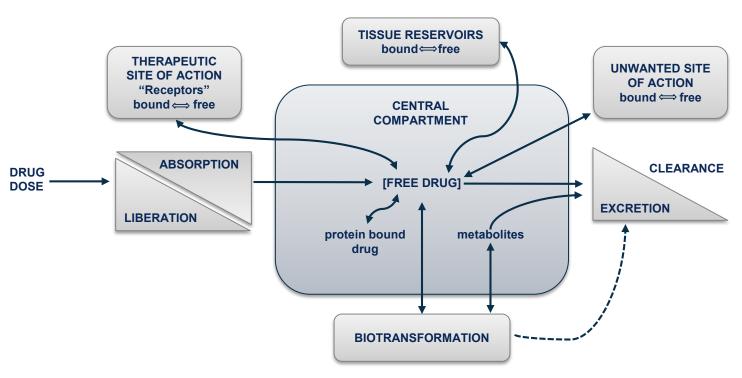


Image from: Brunton LL, et al; 20051

Bioavailability

- Bioavailability is defined as the fraction of the administered dose that reaches systemic circulation¹
- The factors that influence bioavailability include¹:
 - Dissolution rate
 - Dosage form
 - Route of administration
 - Chemical stability of the active ingredient
 - Metabolism

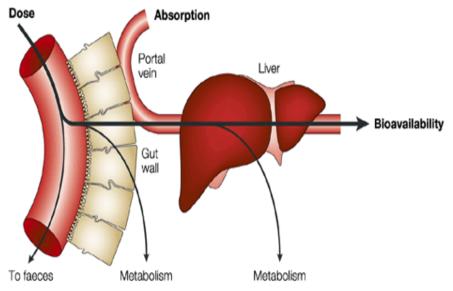


Image from: van de Waterbeemd H, et al;. 2003²

- 1. Winter ME (ed). Basic Clinical Pharmacokinetics. 5th ed. Lippincott Williams & Wilkins; 2010.
- 2. van de Waterbeemd H, et al. Nat Rev Drug Discov. 2003;2(3):192-204.

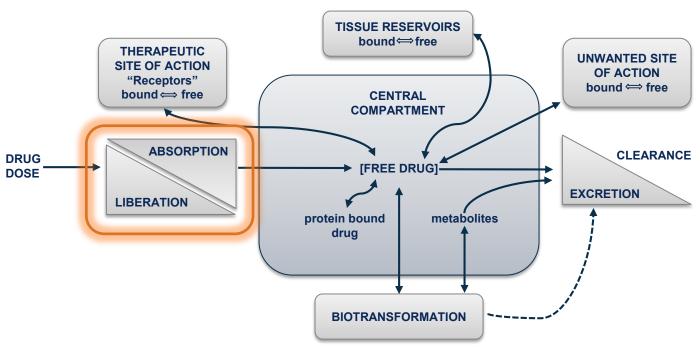


Image from: Brunton LL, et al; 20051

Absorption

Sites of Drug Administration and Absorption

Administration ¹	Site of Absorption ¹	Factors Influencing Absorption
Mouth	Oral cavity	Solubility, ionization state, molecular weight ²
	Sublingual	Solubility, ionization state, molecular weight ²
Oral	Stomach	Dosage form, lipophilicity, ionization state ³
	Small intestine	Dosage form, lipophilicity, ionization state ³
	Large intestine	Dosage form, lipophilicity, ionization state ³
Inhalation	Lungs	Solubility and permeability ⁴
Topical	Skin	Lipophilicity ³
Intramuscular	Muscle	Solubility ³
Subcutaneous	Skin/muscle	Solubility ³
Intravenous	Not applicable	Not applicable ³

- 1. Alavijeh MS, et al. NeuroRx. 2005; 2(4): 554-571.
- 2. Narang N, et al. Int J Pharm Pharm Sci. 2011;3(2):18–22.
- 3. Brunton LL, et al (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill; 2005.
- 4. Ruge CA, et al. Lancet Respir Med. 2013;1(5):402–413.

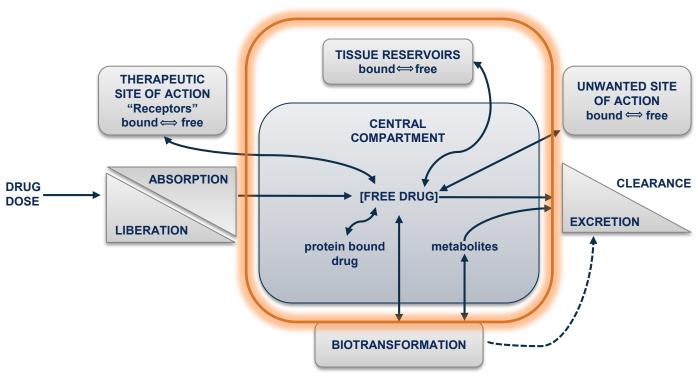


Image from: Brunton LL, et al; 20051

Distribution

- Distribution is defined as the movement of drug from the site of absorption to the rest of the body (eg, plasma/tissues)^{1,2}
- Drugs may distribute into the following fluid compartments^{3,4}:
 - Plasma
 - Interstitial fluid
 - Intracellular fluid
- Volume of distribution is defined as the relationship between the amount of drug in the body and the plasma concentration of the drug⁴
 - Depends on lipid solubility and plasma/tissue protein binding properties⁵

Volume of distribution⁵ = $\frac{Amount\ of\ drug\ in\ the\ body}{Plasma\ drug\ concentration}$

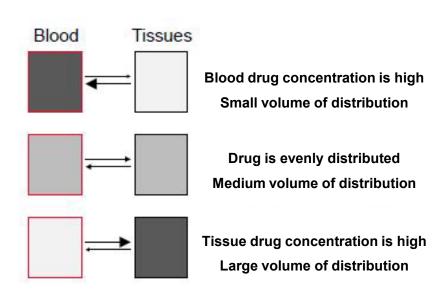


Image based on: Brunton LL, et al; 20054 and Winter ME, et al; 20105

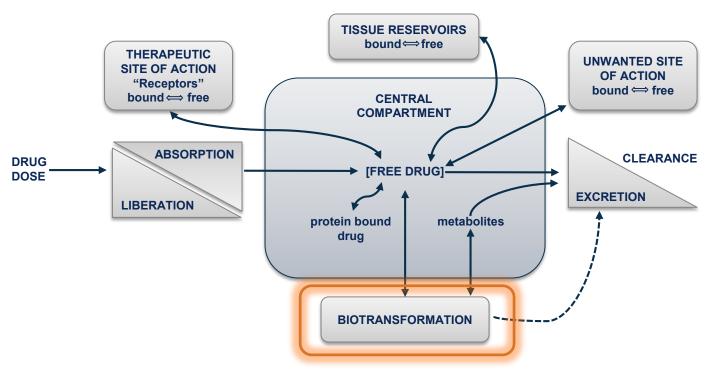
Wooten JM. South Med J. 2012; 105(8):437–445.

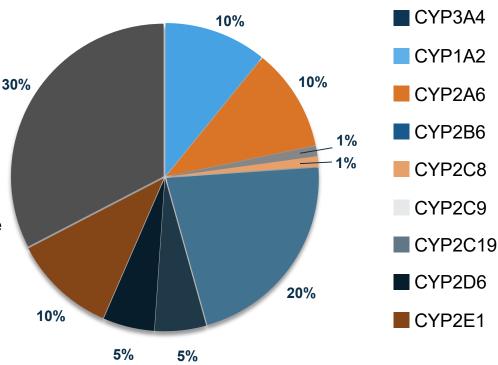
^{2.} Gad SC (ed). Preclinical Development Handbook: ADME and Biopharmaceutical Properties. 1st ed. John Wiley & Sons, Inc.; 2008.

^{3.} Rhoades RA, Bill DR (eds), Medical Phylisiology: Principles for Clinical Medicine, 4th ed. Lippincott Williams & Wilkins; 2012.

^{4.} Brunton LL, et al (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill; 2005.

Winter ME (ed). Basic Clinical Pharmacokinetics. 5th ed. Lippincott Williams & Wilkins; 2010.




Image from: Brunton LL, et al; 20051

Metabolism

- Metabolism—enhances water solubility and excretion of drugs¹
- Two phases of drug metabolism²:
 - Phase I—functionalization:
 - Prodrug activation
 - Drug inactivation
 - · Generate less active metabolites
 - Phase II—conjugation:
 - Enhance the hydrophilicity of the drug/phase I metabolites to facilitate elimination
- Cytochrome P450 enzymes are responsible for 75% of total drug metabolism³

Cytochrome P450 Isoform Relative Amounts in the Liver¹

- 1. Alavijeh MS, et al. *NeuroRx*. 2005; 2(4):554–571.
- 2. Brunton LL, et al (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill; 2005.
- 3. Wang JF, et al. Current drug metabolism. 2010;11(4):342-346.

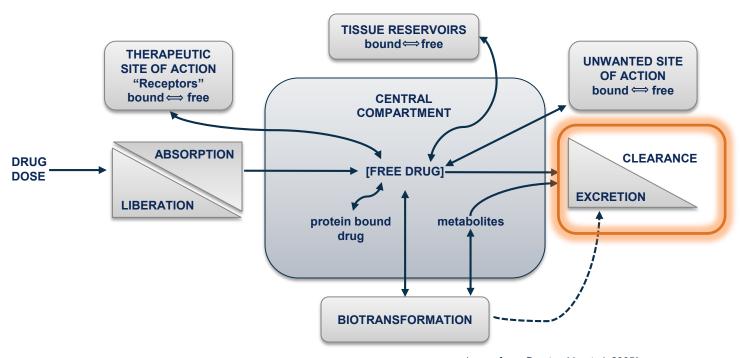
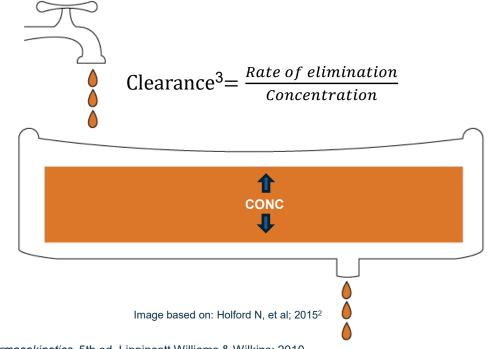



Image from: Brunton LL, et al; 20051

Clearance

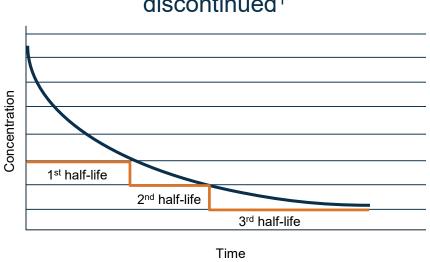
- Clearance is the theoretical volume of blood/plasma completely cleared of drug in a given time period¹
- The bathtub provides a physical model to explain how clearance determines the rate of drug elimination²

Conc, concentration.

- 1. Winter ME (ed). Basic Clinical Pharmacokinetics. 5th ed. Lippincott Williams & Wilkins; 2010.
- 2. Holford N, et al. *Translational and Clinical Pharmacology*. 2015;23(2):42-45.
- 3. Brunton LL, et al (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill; 2005.

Elimination

- Elimination is the irreversible loss of drug from the site of measurement (eg, blood, serum, plasma)¹
- Elimination pathways²:
 - Renal clearance
 - Metabolic clearance
- Renal and metabolic clearance²:
 - Both processes are additive and assumed to be independent of one another
 - Both processes make up the total clearance
- Jambhekar SS, et al (eds). Basic pharmacokinetics. 1st ed. Pharmaceutical Press; 2009.
- 2. Winter ME (ed). Basic Clinical Pharmacokinetics. 5th ed. Lippincott Williams & Wilkins; 2010.



Clinical Application of Elimination Rate Constant and Half-Life

The elimination rate constant and half-life can be used to:

Estimate the time to reach steady state plasma concentration after initiation or change in the maintenance dose¹ Concentration toxic range therapeutic range Steady State Concentration subtherapeutic range 1 7 Multiples of elimination half life

Estimate the time required to eliminate all or a portion of the drug from the body once it is discontinued¹

Figures based on: Winter ME; 20101 and Brunton LL, et al; 20052

- 1. Winter ME (ed). Basic Clinical Pharmacokinetics. 5th ed. Lippincott Williams & Wilkins; 2010.
- Brunton LL, et al (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill; 2005.

Important Concepts to Understand¹

- Elimination half-life is the time required for the total amount of drug in the body to decrease by 50%
- Elimination rate constant is the fraction of drug eliminated in a given time period
 - Depends on clearance and volume of distribution
 - Often expressed in terms of drug's half-life
- At steady state, the rate of drug administration and rate of drug elimination must be equal
 - In most clinical situations, steady state can be assumed after three to five half-lives

^{1.} Winter ME (ed). Basic Clinical Pharmacokinetics. 5th ed. Lippincott Williams & Wilkins; 2010.

Pharmacokinetics: The Basics