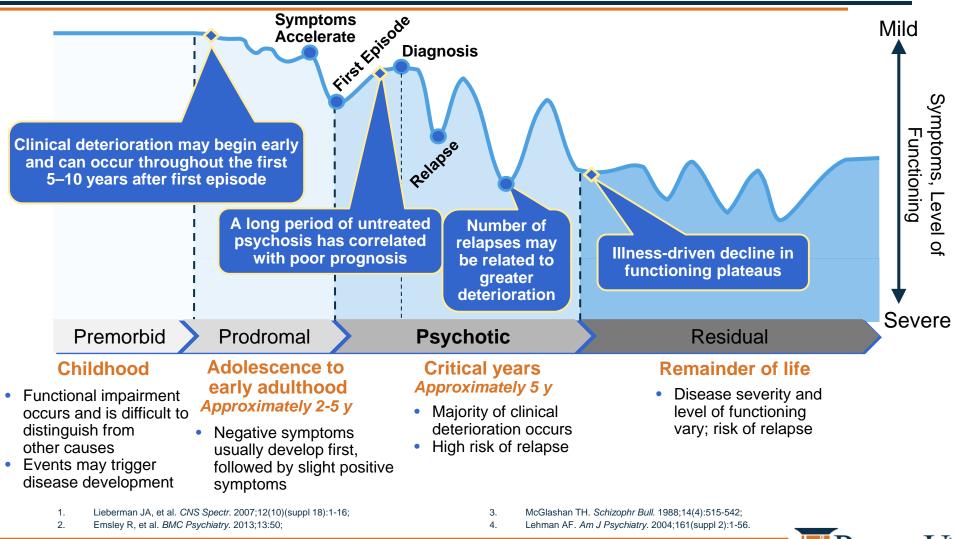


This program is paid for by Otsuka America Pharmaceutical, Inc. and Lundbeck, LLC. The speaker is a paid contractor of Otsuka America Pharmaceutical, Inc.

Perspectives In Schizophrenia:


Proposed Disease Pathophysiology and Potential Treatment Implications

Otsuka America Pharmaceutical, Inc.

© Otsuka America Pharmaceutical, Inc., Rockville, MD

Lundbeck, L.L.C. MRC2.CORP.D.00088

The Theoretical Course of Schizophrenic Progression May Lead to Functional Decline¹⁻⁴

The information provided by PsychU is intended for your educational benefit only. It is not intended as, nor is it a substitute for medical care or advice or professional diagnosis. Users seeking medical advice should consult with their physician or other healthcare professional.

Improving mental health care... togethe © PsychU. All rights reserved.

Dopamine

- Original neurotransmitter implicated in schizophrenia¹
- **Proposed Actions:**
- Utilized in multiple neural circuits in the brain related to reward, cognition, and executive functioning^{2,3}
- Related to positive and negative symptoms of schizophrenia and major side-effects of treatment^{4,5}
- Effects in schizophrenia mediated largely via D₂ receptor type

- 2. Kandel ER et al (eds). Principles of Neural Science. 4th Edition. McGraw-Hill, 2000;
- 3. Purves D et al (eds). Neuroscience. 2nd Edition. Sinauer Associates, 2001;
- 4. Lieberman JA. CNS Drugs. 2004;18(4):251-267;
- 5. Stahl SM. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th Edition. New York, NY: Cambridge University Press; 2013.

Image: Stahl SM.5

Serotonin (5HT)

 Major origin in raphe nuclei with projections to cortex, midbrain, and spinal cord^{1,2}

Proposed Actions:

- Implicated in multiple functions like mood regulation, feeding, sleep, sexual behavior³
- Altering 5HT system can affect positive or negative symptoms and cognition in schizophrenia⁴:
 - Modulates DA release through 5HT_{2A} and 5HT_{1A} receptors⁴

1. Aghajanian GK, Sanders-Bush, E. Serotonin. In Neuropsychopharmacology - 5th Generation of Progress. Lippincott, Williams, & Wilkins, 2002;

- 2. Purves D et al (eds). Neuroscience. 2nd Edition. Sinauer Associates, 2001;
- 3. Maejima T et al. Front Integr Neurosci. 2013;7:40;
- 4. Roth & Meltzer. 2000. www.acnp.org/g4/GN401000117. Accessed July 20, 2015.

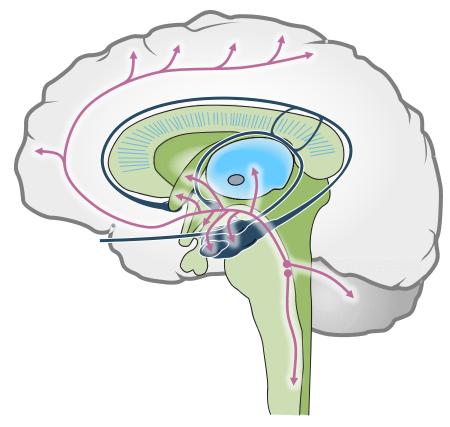


Image: Purves D et al.3

Norepinephrine (NE)

 Ascending projections from locus coeruleus to cortex, midbrain, and cerebellum¹

Proposed Actions:

- Involved in sleep, wakefulness, attention, and feeding behavior¹
- NE system manipulations can affect schizophrenia:
 - α1 receptor suppression may reduce positive symptoms²; α₂ suppression may improve dopaminergic signaling³
 - Enhances antipsychotic effects of DA antagonists³

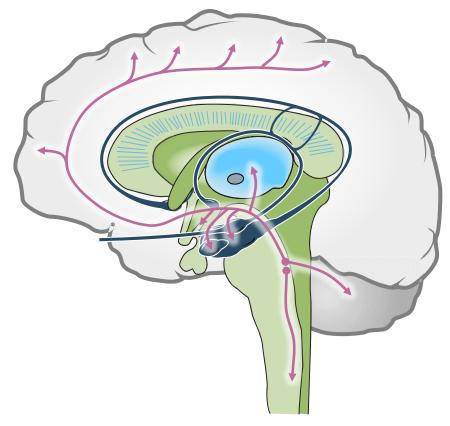


Image: Purves D et al.1

DA, dopamine.

- 1. Purves D et al (eds). *Neuroscience*. 2nd Edition. Sinauer Associates, 2001;
- 2. Svensson TH. Prog Neuropsychopharmacol Biol Psychiatry. 2003 Oct;27(7):1145-158;
- 3. Hensler et al. Adv Pharmacol. 2013;68:167-197.

Glutamate (Glu)

- Major excitatory neurotransmitter of the brain¹
 - Used by ≥ 40% of synapses; found in all cortical efferent neurons¹

Proposed Actions:

- Involved in memory, learning, and neuronal development^{1,2}
- Strong evidence for reduced glutamate signaling in schizophrenia especially at the NMDA receptor¹
- Signaling components altered in individuals with schizophrenia³
- Genes associated with increased schizophrenia risk are involved in glutamate signaling⁴
- 1. Nasrallah HA, Smeltzer DJ. Contemporary Diagnosis and Management of Schizophrenia. 2nd Edition. Newtown, PA: Handbooks in Health Care Company; 2011;
- 2. Wijetunge LS et al. *J Neurosci*. 2008;28(49):13028-13037;
- 3. Clinton SM et al. Neuropsychopharmacology. 2004 Jul;29(7):1353-1362;
- 4. Lisman JE et al. *Trends Neurosci*. 2008;31(5):234-242.

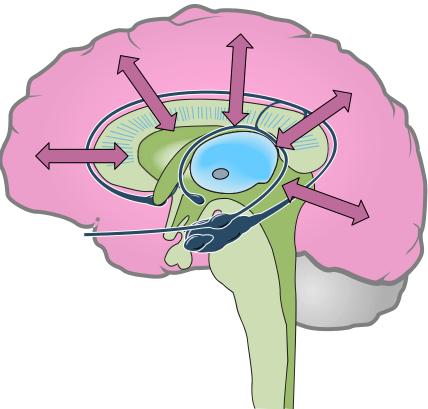


Image: Benarroch EE. *Neurology*. 2008;70(12):964-968.

Current Standard of Care for Schizophrenia Characterized by Impact and Limitations of Treatment¹⁻⁴

Antipsychotic Classification	Functional Impact	Treatment Limitations	
 First-Generation (Typical) Dopamine D₂-receptor antagonism 	 Decrease frequency and severity of psychotic episodes Improve functional capacity 	 Adverse events (EPS symptoms) Suboptimal outcomes 	
 Second-Generation (Atypical) Dopamine D₂-receptor antagonism/partial agonism Serotonin 5HT_{2A} antagonism and 5HT_{1A} partial agonism 	 All the efficacy goals of first- generations antipsychotics plus: Potentially reduced risk of EPS symptom profile Potential for modest improvement in relapse prevention^{2,3} and/or treatment adherence⁴ 	 No clear superiority over first-generation medication in improving positive, cognitive, and social outcomes Adverse events (metabolic, weight gain, sedation, agranulocytosis) 	

EPS, extrapyramidal symptoms.

- 1. Haller CS et al. *F1000 Prime Reports*. 2014:57(6):1-11;
- 2. Leucht S et al. Am J Psychiatry. 2003;160:1209-1222;
- 3. Csernansky JG and Schuchart EK. CNS Drugs. 2002;16(7):473-484;
- 4. Lehman AF. Am J Psychiatry. 2010;161(suppl 2):1-56.

Side Effects Associated With Antipsychotics **Can Vary With Treatment Duration and Pharmacologic Profile**

Neuro-	Acute (≤ 1 week)		Early (< 3 months)		Late (≥ 3 months)	
transmitter/ Receptor	Adverse Effect	Functional Consequence	Adverse Effect	Functional Consequence	Adverse Effect	Functional Consequence
Norepi- nephrine/ α ₁	Hypotension*	Falls	Hypotension*	Falls	Hypotension	Falls
Dopamine/ D ₂	Dystonia* Parkinsonism*	Pain	Parkinsonism* Akathisia*	↓Cognition	TD	Stigma ↓Socializing ↓QoL
	↑Prolactin*	Sexual dysfunction	↑Prolactin*	Sexual dysfunction, Hypo-gonadism	↑Prolactin	Osteoporosis CHD? Breast Cancer?
Histamine/ H ₁	Sedation*	↓Cognition ↓Functioning	Sedation*	↓Cognition ↓Functioning	Sedation	↓Cognition ↓Functioning
	Weight	↑Lipids ↑Glucose	↑Weight	↑Lipids ↑Glucose	Diabetes Dyslipidemia CHD	↓Functioning ↓QoL
Acetyl- choline/ M ₁₋₄	Blurry vision* Dry mouth*	Discomfort	↓Cognition ↓Blurry vision* Dry mouth* Constipation*	↓Functioning Discomfort	↓Cognition ↓Blurry vision* Dry mouth* Constipation*	↓Functioning Discomfort

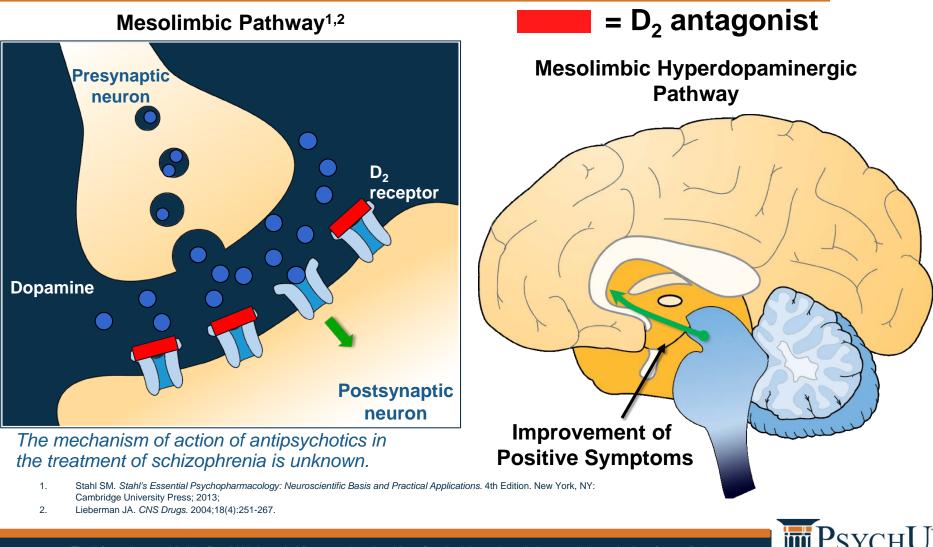
*Tolerance may develop; CHD, coronary heart disease; H1, histamine receptor type 1; M1-4, muscarinic receptor types 1-4,QoL, quality of life; TD, tardive dyskinesia. 1

Correll CU. CNS Spectr. 2007;12(12)(suppl 21):10-14.

Concepts of Receptor Pharmacology

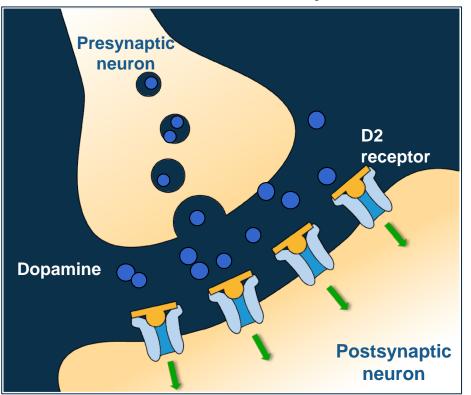
Intrinsic activity of drug at a receptor

1.


- The physiologic effect a ligand elicits once bound to its receptor
- Ligand can partially or fully stimulate (agonism) or inhibit (antagonism) receptor activity

Goodman and Gilman's The Pharmacological Basis of Therapeutics. 10th edition; Hardman JG, Limbird LE (eds); New York, NY: McGraw-Hill; 2001 pp36-40.

Proposed Dopamine Antagonism in the Mesolimbic Pathway Improves Positive Symptoms



Improving mental health care... togethe

© PsychU. All rights reserved.

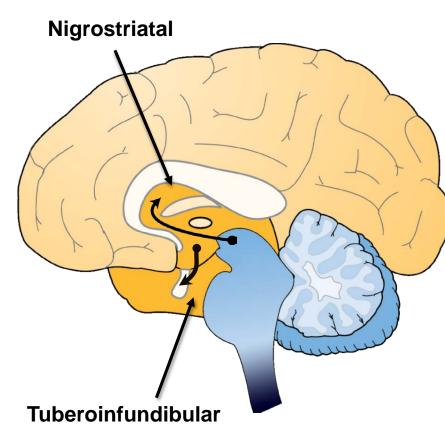
D₂ Partial Agonist May Improve Positive and Negative Symptoms

Mesolimbic Pathway^{1,2}

--- = D₂ Partial Agonist

- Binds to postsynaptic
 D₂ receptors²
- Associated with improvements in psychotic and negative symptoms of schizophrenia²

The mechanism of action of antipsychotics in the treatment of schizophrenia is unknown.


- 1. Stahl SM. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th Edition. New York, NY: Cambridge University Press; 2013;
- 2. Lieberman JA. CNS Drugs. 2004;18(4):251-267.

Effects of Antipsychotics in the Nigrostriatal and Tuberoinfundibular Pathways

- Nigrostriatal pathway¹:
 - Dopamine inactivation may cause EPS²
- Tuberoinfundibular pathway¹:
 - Dopamine inactivation may result in hyperprolactinemia²

EPS, extrapyramidal symptoms.

1. Stahl SM. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th Edition. New York, NY: Cambridge University Press; 2013;

2. Lieberman JA. CNS Drugs. 2004;18(4):251-267.

Alternative Hypotheses

Hypothesis	Details/Evidence	
Neuroinflammation	 Neuroinflammation, microglial activation, cytokine production, and other immune processes observed in disease^{1,2} 	
Plasticity / Connectivity Changes	 Possible structural changes at the cellular level and/or functional changes through changes at the synaptic level³ 	
Genetics	Family, twin, and adoption studies suggest hereditary component Multiple genes implicated ⁴	

1. Girgis et al. *Biol Psychiatry*. 2014;75(4):292-299;

- 2. Monji A. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115-121;
- 3. Stephan KE et al. *Biol Psychiatry*. 2006;59(10):929-939;
- 4. Sun et al. *PLoS One*. 2010;5(6):e11351.

For more information or to request a more detailed live presentation on this topic from your local Medical Science Liaison, please visit www.psychu.org/liaisons

www.psychu.org